Return measured variables
Return measured variables
Details
measures() returns a list of symbols; measured_vars() gives a character vector.
When used inside tidyverse functions like dplyr::select(), dplyr::relocate(),
or other tidyselect-compatible functions, measured_vars() acts as a selection
helper that automatically selects all measured variables (non-key, non-index
columns) from the tsibble.
measures() returns a list of symbols; measured_vars() gives a character vector.
When used inside tidyverse functions like dplyr::select(), dplyr::relocate(),
or other tidyselect-compatible functions, measured_vars() acts as a selection
helper that automatically selects all measured variables (non-key, non-index
columns) from the tsibble.
Examples
measures(pedestrian)
#> [[1]]
#> Date
#>
#> [[2]]
#> Time
#>
#> [[3]]
#> Count
#>
measures(tourism)
#> [[1]]
#> Trips
#>
measured_vars(pedestrian)
#> [1] "Date" "Time" "Count"
measured_vars(tourism)
#> [1] "Trips"
# Use as a tidyselect helper to select only measured variables
library(dplyr)
tourism %>% select(measured_vars())
#> # A tsibble: 24,320 x 5 [1Q]
#> # Key: Region, State, Purpose [304]
#> Trips Quarter Region State Purpose
#> <dbl> <qtr> <chr> <chr> <chr>
#> 1 135. 1998 Q1 Adelaide South Australia Business
#> 2 110. 1998 Q2 Adelaide South Australia Business
#> 3 166. 1998 Q3 Adelaide South Australia Business
#> 4 127. 1998 Q4 Adelaide South Australia Business
#> 5 137. 1999 Q1 Adelaide South Australia Business
#> 6 200. 1999 Q2 Adelaide South Australia Business
#> 7 169. 1999 Q3 Adelaide South Australia Business
#> 8 134. 1999 Q4 Adelaide South Australia Business
#> 9 154. 2000 Q1 Adelaide South Australia Business
#> 10 169. 2000 Q2 Adelaide South Australia Business
#> # ℹ 24,310 more rows
# Combine with key and index selectors
tourism %>% select(measured_vars(), key_vars(), index_var())
#> # A tsibble: 24,320 x 5 [1Q]
#> # Key: Region, State, Purpose [304]
#> Trips Region State Purpose Quarter
#> <dbl> <chr> <chr> <chr> <qtr>
#> 1 135. Adelaide South Australia Business 1998 Q1
#> 2 110. Adelaide South Australia Business 1998 Q2
#> 3 166. Adelaide South Australia Business 1998 Q3
#> 4 127. Adelaide South Australia Business 1998 Q4
#> 5 137. Adelaide South Australia Business 1999 Q1
#> 6 200. Adelaide South Australia Business 1999 Q2
#> 7 169. Adelaide South Australia Business 1999 Q3
#> 8 134. Adelaide South Australia Business 1999 Q4
#> 9 154. Adelaide South Australia Business 2000 Q1
#> 10 169. Adelaide South Australia Business 2000 Q2
#> # ℹ 24,310 more rows
# Use with other tidyselect functions
pedestrian %>% select(measured_vars(), where(is.numeric))
#> # A tsibble: 66,037 x 5 [1h] <Australia/Melbourne>
#> # Key: Sensor [4]
#> Date Time Count Date_Time Sensor
#> <date> <int> <int> <dttm> <chr>
#> 1 2015-01-01 0 1630 2015-01-01 00:00:00 Birrarung Marr
#> 2 2015-01-01 1 826 2015-01-01 01:00:00 Birrarung Marr
#> 3 2015-01-01 2 567 2015-01-01 02:00:00 Birrarung Marr
#> 4 2015-01-01 3 264 2015-01-01 03:00:00 Birrarung Marr
#> 5 2015-01-01 4 139 2015-01-01 04:00:00 Birrarung Marr
#> 6 2015-01-01 5 77 2015-01-01 05:00:00 Birrarung Marr
#> 7 2015-01-01 6 44 2015-01-01 06:00:00 Birrarung Marr
#> 8 2015-01-01 7 56 2015-01-01 07:00:00 Birrarung Marr
#> 9 2015-01-01 8 113 2015-01-01 08:00:00 Birrarung Marr
#> 10 2015-01-01 9 166 2015-01-01 09:00:00 Birrarung Marr
#> # ℹ 66,027 more rows
measures(pedestrian)
#> [[1]]
#> Date
#>
#> [[2]]
#> Time
#>
#> [[3]]
#> Count
#>
measures(tourism)
#> [[1]]
#> Trips
#>
measured_vars(pedestrian)
#> [1] "Date" "Time" "Count"
measured_vars(tourism)
#> [1] "Trips"
# Use as a tidyselect helper to select measured variables
library(dplyr)
tourism %>% select(measured_vars(), key_vars(), index_var())
#> # A tsibble: 24,320 x 5 [1Q]
#> # Key: Region, State, Purpose [304]
#> Trips Region State Purpose Quarter
#> <dbl> <chr> <chr> <chr> <qtr>
#> 1 135. Adelaide South Australia Business 1998 Q1
#> 2 110. Adelaide South Australia Business 1998 Q2
#> 3 166. Adelaide South Australia Business 1998 Q3
#> 4 127. Adelaide South Australia Business 1998 Q4
#> 5 137. Adelaide South Australia Business 1999 Q1
#> 6 200. Adelaide South Australia Business 1999 Q2
#> 7 169. Adelaide South Australia Business 1999 Q3
#> 8 134. Adelaide South Australia Business 1999 Q4
#> 9 154. Adelaide South Australia Business 2000 Q1
#> 10 169. Adelaide South Australia Business 2000 Q2
#> # ℹ 24,310 more rows
# Use with other tidyselect functions
pedestrian %>% select(measured_vars(), where(is.numeric))
#> # A tsibble: 66,037 x 5 [1h] <Australia/Melbourne>
#> # Key: Sensor [4]
#> Date Time Count Date_Time Sensor
#> <date> <int> <int> <dttm> <chr>
#> 1 2015-01-01 0 1630 2015-01-01 00:00:00 Birrarung Marr
#> 2 2015-01-01 1 826 2015-01-01 01:00:00 Birrarung Marr
#> 3 2015-01-01 2 567 2015-01-01 02:00:00 Birrarung Marr
#> 4 2015-01-01 3 264 2015-01-01 03:00:00 Birrarung Marr
#> 5 2015-01-01 4 139 2015-01-01 04:00:00 Birrarung Marr
#> 6 2015-01-01 5 77 2015-01-01 05:00:00 Birrarung Marr
#> 7 2015-01-01 6 44 2015-01-01 06:00:00 Birrarung Marr
#> 8 2015-01-01 7 56 2015-01-01 07:00:00 Birrarung Marr
#> 9 2015-01-01 8 113 2015-01-01 08:00:00 Birrarung Marr
#> 10 2015-01-01 9 166 2015-01-01 09:00:00 Birrarung Marr
#> # ℹ 66,027 more rows
